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The Nikolaevskiy equation was originally proposed as a model for seismic waves and is also a model for a
wide variety of systems incorporating a neutral “Goldstone” mode, including electroconvection and reaction-
diffusion systems. It is known to exhibit chaotic dynamics at the onset of pattern formation, at least when the
dispersive terms in the equation are suppressed, as is commonly the practice in previous analyses. In this paper,
the effects of reinstating the dispersive terms are examined. It is shown that such terms can stabilize some of
the spatially periodic traveling waves; this allows us to study the loss of stability and transition to chaos of the
waves. The secondary stability diagram �“Busse balloon”� for the traveling waves can be remarkably
complicated.
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I. INTRODUCTION

In 1989, Nikolaevskiy �1� derived a model for longitudi-
nal seismic waves, in the form of a one-dimensional partial
differential equation �PDE� for a displacement velocity. Al-
though Nikolaevskiy’s equation included dispersive terms,
most subsequent analysis has treated a simplified version of
the PDE, in which these terms are omitted. This reduced
form is now generally known as the Nikolaevskiy equation,
which may be written in the form

�u

�t
= −

�2

�x2�r − �1 +
�2

�x2�2�u − u
�u

�x
, �1�

where r is a control parameter. Equation �1� has been pro-
posed as a model for several other physical systems, includ-
ing phase instabilities in reaction-diffusion equations �2�,
electroconvection �3�, and transverse instabilities of fronts
�4�. More generally, Eq. �1� can be regarded as a simple
model of a pattern-forming system with an instability at fi-
nite wave number and a neutral “Goldstone” mode arising
from symmetry �3,5�.

The uniform state u	0 of Eq. �1� becomes unstable at
r=0 to spatially periodic “roll” solutions, with wave num-
bers around k=1. However, these, in turn, are themselves all
unstable at onset in sufficiently large domains �3�; this un-
usual instability arises from the neutral mode at wave num-
ber k=0. In fact, numerical simulations show that the Ni-
kolaevskiy equation exhibits spatiotemporal chaos at onset
�5,6�. The scalings associated with this chaotic regime are
unusual in pattern-forming systems �5,7�, and this interesting
feature of the equation has stimulated significant investiga-
tion �8�.

Although in some applications �such as the instability of
fronts �4�� the omission of dispersive terms is justified on
symmetry grounds, this is not the case in the original context
of a model for seismic waves �1�.

Earlier work that has considered the effects of dispersion

includes the paper of Malomed �9�, who reinstated one dis-
persive term in the Nikolaevskiy equation and analyzed the
secondary stability of traveling-wave solutions by means of
coupled Ginzburg-Landau-type equations for the amplitude
of the traveling waves and a large-scale mode. His results
showed that dispersion could stabilize waves; however, his
derivation was not entirely asymptotically self-consistent �3�.
Kudryashov and Migita �10� showed, on the basis of numeri-
cal simulations, that traveling waves can be stabilized by the
presence of dispersive terms in the Nikolaevskiy equation. It
is also known that in the related Kuramoto-Sivashinsky
equation, the introduction of a dispersive term can stabilize
periodic traveling waves �11�.

Our aim in this paper is to provide a systematic examina-
tion of the effects of dispersion. By varying the parameters
corresponding to dispersion, we can find when dispersion
stabilizes traveling waves and investigate how the chaotic
state in the nondispersive equation arises as the dispersion is
reduced.

In the following section we give the form of the equation
and the traveling waves under consideration. Computational
results on the stability of these waves are given in Sec. III.
The stability analysis of the waves is complicated and de-
pends on the magnitude of the dispersion terms; three differ-
ent scalings are considered in Secs. IV–VI. Section VII illus-
trates some numerical simulations of the Nikolaevskiy
equation with dispersion, and our conclusions are summa-
rized in Sec. VIII.

II. NIKOLAEVSKIY EQUATION WITH DISPERSION

We examine the Nikolaevskiy equation with dispersion in
the form

�u

�t
= −

�2

�x2�r − �1 +
�2

�x2�2�u − u
�u

�x
+ �

�3u

�x3 + �
�5u

�x5 ,

�2�

where � and � are the dispersion coefficients. This equation
is thus the one originally proposed by Nikolaevskiy �1� �and
later examined in �9,10��, with all spatial derivatives up to
the sixth appearing on the right-hand side. In the numerical
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simulations presented in Sec. VII, we shall impose the peri-
odic boundary condition

u�x + D,t� = u�x,t� �3�

for some domain length D.
Before proceeding, we note that Eq. �2� has the same

Galilean symmetry �x�x+Vt, u�u+V� as nondispersive
Eq. �1�. Moreover, in view of the Galilean symmetry and the
observation that, when boundary condition �3� is imposed,

d

dt



0

D

u�x,t�dx = 0,

the spatial average of u may be set as zero �by transforming
to a moving frame of reference if necessary�. The reflection
symmetry �x�−x, u�−u� of Eq. �1� is broken by the pres-
ence of the dispersive terms. However, there is a symmetry
x�−x, u�−u, ��−�, and ��−�; as a consequence of
this symmetry we need consider only the case ��0.

Linearization around the steady state u	0 yields the dis-
persion relation

� = k2�r − �k2 − 1�2� + ik3�k2� − ��

for Fourier modes proportional to eikx+�t. Thus in general
these perturbations take the form of traveling waves, with
phase speed

cp = −
�i

k
= k2�� − k2�� �4�

and group velocity

cg = −
��i

�k
= k2�3� − 5�k2� . �5�

The real part of the growth rate, �r, is plotted in Fig. 1, for r
just above the threshold value rc=0 for the onset of instabil-
ity. This figure shows that there exists a band around the
critical wave number kc=1 of linearly growing modes, and a
neutral mode at k=0 �the so-called “Goldstone mode”�,
which significantly affects the nonlinear dynamics of Eq. �2�.

Just beyond the onset of instability of the zero solution, it
is straightforward to carry out a weakly nonlinear analysis of
Eq. �2�, with

r = �2r2. �6�

This analysis reveals that there are traveling-wave solutions
of the form

u � �a0eik�x−st� + c.c., �7�

where the wave number k=1+�q. The amplitude turns out to
be given by

a0 = 6�r2 − 4q2�1/2�1 + 1
36�� − 5��2�1/2 �8�

and the speed of the wave is

s = cp − 1
6�2�r2 − 4q2��� − 5�� + o��2� , �9�

where cp is given by Eq. �4� and the second contribution to s
reflects �weakly� nonlinear effects. So, regardless of the val-
ues of the dispersion parameters � and �, such spatially pe-
riodic solutions exist for r2�4q2. We now turn to the ques-
tion of the secondary stability of these solutions.

III. SECONDARY STABILITY OF TRAVELING WAVES:
NUMERICAL RESULTS

In this section we first outline a numerical method for the
calculation of the nonlinear traveling waves and their sec-
ondary stability, and then give the results of these computa-
tions, showing the stability boundaries of traveling waves.

A. Numerical method for calculating secondary stability

To calculate the secondary stability of a traveling-wave
solution for given values of the parameters, we first find the
traveling-wave solution ū�x , t�= f�z�, where z=x−ct. Here, c
is the nonlinear wave speed, which in general is not exactly
equal to the linear wave speed cp of Eq. �4�. We approximate
the solution numerically using the truncated Fourier series

f�z� = �
−N/2+1

N/2

ūneinkz.

Substitution in Eq. �2� �and calculation of the nonlinear term
pseudospectrally� yields a system of nonlinear equations
�solved in MATLAB� for the Fourier coefficients of f�z�, to-
gether with c, which is determined from

c

0

D

�f��2dz = �

0

D

�f��2dz − �

0

D

�f��2dz + 

0

D

f�f��2dz ,

�10�

where D=2� /k is the length of the domain and k is the wave
number of the solution under consideration. Expression �10�
follows from multiplying Eq. �2� by f��z� and integrating
over the domain, using integration by parts multiple times.
To compensate for the additional unknown c, we have an
additional equation from the fact that we may choose the
phase of the wave, for example, by specifying that ū1 is real.

After calculating the solution, we construct the eigenvalue
problem for perturbations. If we suppose that u�x , t�= f�z�
+ ũ�x , t�, then substitution in Eq. �2� yields the linearized
perturbation equation
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FIG. 1. Plot of �r for the case r=0.1: note the linearly growing
modes with wave number around kc=1 and the weakly damped
large-scale modes close to k=0.
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� ũ

�t
= −

�2

�x2�r − �1 +
�2

�x2�2�ũ + �
�3ũ

�x3 + �
�5ũ

�x5 − f�z�
� ũ

�x

− ũ f��z� . �11�

We take

ũ = e	t+ipz �
−N/2+1

N/2

vneinkz,

where all possible eigenfunctions may be captured by limit-
ing consideration to −k /2
 p
k /2. The resulting eigen-
value equations to determine the growth rate 	 are then

�	 − icKn�vn = Lvn − �
−N/2+1

N/2

iKmvmūn−m − �
−N/2+1

N/2

imkvn−mūm,

where L=Kn
2�r− �1−Kn

2�2�−i�Kn
3+i�Kn

5 and Kn= p+nk. The
eigenvalues of this system are computed numerically. By ex-
amining the largest real part of all eigenvalues 	 for a large
sample of values of p in the relevant interval, we determine
whether the original traveling waves are stable or unstable.
In Sec. III B we provide some stability diagrams based on
the above method.

In determining our results, we have been careful to check
that: adequate samples in p are taken �too few, particularly
for small values of p, can lead one to miss certain small
regions of instability�; adequate Fourier modes are taken in
determining both the original solution and the perturbations;
adequate samples are taken in parameter space to determine
all regions of stable rolls. Typically, 300 values of p are used,
with N=16.

B. Results

Now we present the secondary stability diagrams. The
first case considered here is setting �=0 and varying � �see
Fig. 2�. When � is small ��=1 /2�, there is a very small
region of stable waves in the �k ,r� plane. The stable region is
a thin strip, confined to small values of r; in this case, for
r�0.0078 all rolls are unstable.

For larger � this strip of stable waves is longer and wider;
for example, at �=2 there are some stable rolls up to r

0.22, and at �=5 the stability region extends at least as far
as r=0.9. Furthermore, it is apparent for �=5 that a sym-
metrical Eckhaus-like stability region is present for very
small values of r �from the numerical results themselves, it

seems to be present in all three cases but is visible only in the
last plot of Fig. 2�. The shrinkage of the region of stable
traveling waves for small � is consistent with there being no
stable rolls at all in the nondispersive case.

While an exhaustive examination of the secondary stabil-
ity diagrams across �� ,�� parameter space is infeasible, it is
worthy of note that these diagrams may be extremely com-
plicated. A good example arises if we set �=40 and vary �
�see Fig. 3�. For �=5 there is a small Eckhaus-like stability
region for r�0.001; for larger values of r, there remains a
single stability region. For larger �, however, the stability
region splits into several parts; for example, at �=5.5 there
may be up to five separate intervals of stable traveling waves
for a given value of r.

Above we have presented our secondary stability dia-
grams in the �k ,r� plane, for fixed values of � and �. If our
interest is in the effects of dispersion on the stability of trav-
eling waves then it is more instructive instead to fix r and
present results in either the �k ,�� or the �k ,�� plane. Our
first example is for r=0.01 and �=0 �see Fig. 4�a��. Given
this value of r, the traveling waves exist for 0.9487�k
�1.0488. We expect that if � is small enough then all roll
solutions are unstable; this is indeed the case. For larger
values of �, a region of stable rolls appears. In Fig. 4�b�, we
show a second case, where we fix �=40 and r=0.1, to em-
phasize that the structure of the stability region may be rather
complicated, exhibiting a sensitive parameter dependence.

IV. SECONDARY STABILITY OF TRAVELING WAVES:
� ,�=O(1)

In this and the following two sections, we analyze the
secondary stability of traveling waves �Eq. �7��. The most
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FIG. 2. The secondary stability regions of traveling waves of Eq. �2�, calculated numerically for �a� �=1 /2, �b� �=2, and �c� �=5, all
for �=0. Shown are the marginal curve r= �1−k2�2 �solid line� and the secondary stability boundary of the traveling waves �dashed line�,
with stability between the dashed lines.
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FIG. 3. The secondary stability regions of traveling waves of
Eq. �2�, calculated numerically for �a� �=5, �b� �=5.5, both with
�=40. Shown are the marginal curve r= �1−k2�2 �solid line� and the
secondary stability boundaries of the traveling waves �dashed line�,
with stability between the dashed lines. To clarify the regions of
stability/instability, the “s” indicates one of the stable regions.
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straightforward case arises when the dispersion parameters �
and � are each O�1�. To contrast with later sections, we shall
characterize this case as strong dispersion. Whereas the non-
dispersive Nikolaevskiy equation has no stable spatially pe-
riodic states, Kudryashov and Migita �10� found stable peri-
odic waves in their numerical simulations of the dispersive
PDE �Eq. �2�� in this regime.

We begin by introducing the weakly nonlinear expansion

u = �u1 + �2u2 + �3u3 + ¯ , �12�

with r given by Eq. �6�. Then substitution in Eq. �2�
and consideration of successive orders in � leads to the
following.

At O���, we find that

u1 = Aei�x−c0t� + c.c.,

where c0=�−�, and where the amplitude A varies slowly in
space and in time, in principle depending on the slow vari-
ables

X = �x, � = �t, T = �2t .

A consideration of the terms proportional to ei�x−c0t� at O��2�
then shows that in fact A=A�
 ,T�, where


 = X − �3� − 5��� 	 X − v�

is a coordinate moving at the group velocity of the waves.
Then solving the problem at this order in � yields

u2 = −
iA2

36�1 + i�� − 5��/6�
e2i�x−c0t� + c.c. + f .

Here f is a slowly varying function of X, �, and T, chosen to
appear at this order to balance forcing terms appearing at the
next order in �.

At O��3�, we find, from the respective consideration of
the terms in Eq. �2� proportional to ei�x−c0t� and e0i�x−c0t�, the
amplitude equations

�A

�T
= �r2 −

1 − i�� − 5��/6
36 + �� − 5��2 �A�2�A

+ �4 + i�3� − 10���
�2A

�
2 − ifA , �13�

� f

��
= −

� �A�2

�

. �14�

Since A=A�
 ,T�, the second amplitude equation suggests
taking f = f�
 ,T�, in which case Eq. �14� becomes

− v
� f

�

= −

� �A�2

�

,

and hence vf = �A�2+K�T� for some K�T�. However, the con-
straint that the spatial average of u should be zero gives
K�T�=−��A�2�, where the angle brackets denote the average
in 
. Thus

f =
− ��A�2� + �A�2

v
�15�

and amplitude Eq. �13� becomes the nonlocal Ginzburg-
Landau equation

�A

�T
= �r2 −

1 − i�� − 5��/6
36 + �� − 5��2 �A�2 + i

��A�2� − �A�2

v
�A

+ �4 + i�3� − 10���
�2A

�
2 . �16�

It is worth mentioning that in view of Eq. �15� the present
scaling breaks down when v is small; in particular, this is the
case when � and � are both small, and this case will be
considered in later sections.

It is helpful in analyzing Eq. �16� to put it in canonical
form by rescaling all the variables, to give

�A

�T
= A + id���A�2� − �A�2�A + �1 + ia�

�2A

�
2 − �1 + ib��A�2A ,

�17�

where

a =
3� − 10�

4
, b =

5� − �

6
, d =

36 + �5� − ��2

v
.

Equations similar to Eq. �17�, including a nonlocal nonlinear
term have been derived and studied in the context of convec-
tion in a rotating annulus �12� and in electrical and magnetic
systems �13,14�.

Equipped with Eq. �17�, we are now in a position to ex-
plore the secondary stability of weakly nonlinear spatially
periodic solutions of the dispersive Nikolaevskiy equation.
Such solutions correspond to plane-wave solutions of Eq.
�17�, which exist in the form A= Pei��T+q
�, with P= �1
−q2�1/2 and �=q2�b−a�−b. To study the stability of the
plane-wave solution, we write A= �1+ p�
 ,T��Pei��T+q
�,
which, after substitution in Eq. �17� and linearization in the
perturbation p, yields

�p

�T
= �1 + ia�� �2p

�
2 + 2iq
�p

�

� − �1 + ib�P2�p� + p�

+ idP2��p + p�� − �p + p��� .

Then upon setting p�
 ,T�=R�T�eiL
+S��T�e−iL
 and equating
the coefficients of eiL
 and e−iL
, we have
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FIG. 4. The secondary stability of traveling waves of Eq. �2�
calculated numerically for �a� fixed �=0 and r=0.01 in �k ,�� pa-
rameter space, �b� fixed �=40 and r=0.1 in �k ,�� parameter space.
The marginal curve is represented by the solid lines; traveling
waves are stable inside the dashed lines.
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dR

dT
= − �1 + ia�L�LR + 2qR�

− �1 + ib�Q2�R + S� − idQ2�R + S� ,

dS

dT
= − �1 − ia�L�LS − 2qS�

− �1 − ib�Q2�R + S� + idQ2�R + S� .

Finally, with R�T� and S�T� proportional to e�T, and expand-
ing the growth rate in powers of the perturbation wave num-
ber L, we have the dispersion relation

� = − 2iq�a − b − d�L + L2P−2�− 1 − a�b + d� + q2

��3 + 2�b + d�2 + a�b + d��� + O�L3� . �18�

If we suppose �as is generally the case� that a�b+d then
it is apparent from Eq. �18� that the solution has a long-
wavelength oscillatory instability whenever

q2�3 + 2�b + d�2 + a�b + d�� � 1 + a�b + d� .

Since 1+a�b+d��3+a�b+d�+2�b+d�2, we see that stabil-
ity is determined by the following. If 1+a�b+d��0 then 3
+a�b+d�+2�b+d�2�0, and the plane-wave solutions are
stable provided

0 
 q2 � qc
2 	

1 + a�b + d�
3 + 2�b + d�2 + a�b + d�

� 1. �19�

If instead 1+a�b+d��0, then all plane waves are unstable.
We note that setting a=b=d=0 reduces Eq. �17� to a real
Ginzburg-Landau equation for A, and our results reduce to
the usual Eckhaus instability �with stability for q2�1 /3�
�15,16�.

To apply this result to Eq. �2� it is necessary to indicate
the regions in �, � parameter space in which the quantity
1+a�b+d� is positive or negative. In Fig. 5, regions denoted
by “s” indicate where 1+a�b+d��0 so that there are some
stable plane waves, as in Eq. �19�; those regions denoted by
“u” show where 1+a�b+d��0, and hence all plane waves
are unstable. As discussed in Sec. II, only the region ��0
need be presented. The existence of a stable region in Fig. 5
is consistent with the numerical results of Sec. III; for ex-
ample, Fig. 2 shows a stable region when �=O�1� and �
=0.

In Fig. 6, we illustrate the considerations above with some
numerical simulations of modified complex Ginzburg-
Landau Eq. �17�. Our numerical code is pseudospectral, and
uses exponential time differencing �17�. In each case the ini-
tial condition is a plane wave plus small-amplitude random
noise. For the simulations illustrated in Figs. 6�a� and 6�b�,
1+a�b+d��0. The two plots show the fate of initial condi-
tions in the unstable and stable regions of Fig. 5, respec-
tively. In each case, a stable plane wave is obtained at large
T. Figure 6�c� shows the development of instability in the
case 1+a�b+d��0, where all plane waves are unstable.
Here the solution is persistently time dependent.

The analysis above tells us about the secondary stability
of traveling-wave solutions of the dispersive Nikolaevskiy
equation when � ,�=O�1�, and the results are summarized in
Fig. 5. We may think of this analysis as holding for any fixed
� and � �not both zero� in the limit as r→0; thus we expect
the lowest part of the secondary stability diagram in �r ,k�
parameter space to reflect Fig. 5.

However, as indicated earlier, when � and � are both
small, the analysis above does not hold and requires recon-
sideration. We should expect such analysis to break down in
this limit because Fig. 5 is inconsistent with the known be-
havior of the nondispersive Nikolaevskiy equation ��=�
=0� for which all rolls are unstable at onset �3,5�. Thus in
Sec. V we consider smaller values of � ,�.

V. SECONDARY STABILITY OF TRAVELING WAVES:
� ,�=O(�3Õ4)

It turns out, after some experimentation, that small � and
� first lead to a new scaling if we adapt the scaling first used
by Tribelsky and Velarde �3� for the nondispersive case and
extended by Cox and Matthews �4� to a damped version of
the Nikolaevskiy equation. In this scaling the original trav-
eling waves remain O���, but the perturbation to the
traveling-wave amplitude is O��3/2� and the large-scale mode
is O��7/4�; furthermore, slow spatial and temporal variations
of perturbations take place on scales given by X=�3/4x, T
=�3/2t, and �=�3/4t. �Note that these slow variables are dif-
ferent from those of Sec. IV, but our notation for slow vari-
ables is consistent within sections.� To allow the develop-
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s u
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FIG. 5. Diagram showing the sign of 1+a�b+d� in �� param-
eter space. Regions with “s” are where 1+a�b+d��0 so that a
limited band of plane waves is stable, as in �19�; a “u” indicates
where 1+a�b+d��0, and all plane waves are unstable.

(b)(a) (c)

FIG. 6. Numerical simulations of amplitude Eq. �17�: in each
case the real part of A is plotted as a function of 
 and T. In �a� and
�b� �=10, whereas in �c� �=8.4; in each case �=2.6. The initial
condition in each case is a plane wave, with n wavelengths in the
computational box −32��
�32�, plus small-amplitude random
noise: �a� n=28 �hence q=0.875�; �b� n=10 �q=0.3125�; and �c�
n=20 �q=0.625�.
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ment of consistent amplitude equations for the perturbation
we then take

� = �3/4�̂, � = �3/4�̂ .

Applying a weakly nonlinear analysis to Eq. �2� gives

u = ��a0 + �1/2a�X,T��eiM + c.c. + �7/4f�X,T� + ¯ ,

�20�

where a0=6�r2−4q2,

M = �1 + �q�x − ĉ� − �1/4v̂qT + �1/4��X,T� ,

ĉ= �̂− �̂ and v̂=3�̂−5�̂. Here a�X ,T� represents distur-
bances to the amplitude of the pattern, ��X ,T� represents
corresponding disturbances to the phase of the pattern and
f�X ,T� is a large-scale mode. Substitution of u, as given by
Eq. �20�, in Eq. �2� requires the consideration of the problem
at successive orders in �1/4. After much consequent algebra,
we find the �nonlinear� amplitude equations

��

�T
= 4

�2�

�X2 − f − v̂
��

�X
,

� f

�T
=

�2f

�X2 − 2a0
�a

�X
,

�a

�T
= 4

�2a

�X2 − 4a0� ��

�X
�2

− 8a0q
��

�X
− v̂

�a

�X
.

Note that dispersion is represented in these equations only
through the terms v̂�X and v̂aX, representing advection of the
pattern envelope with the group velocity v̂. Note also that the
group velocity of the large-scale mode f is zero, and hence
no corresponding term appears in the second of these equa-
tions.

The three amplitude equations may be reduced to the
single �nonlinear� phase equation

� �

�T
− 4

�2

�X2 + v̂
�

�X
�2� �

�T
−

�2

�X2�� = − 16a0
2� ��

�X
+ q� �2�

�X2 .

�21�

Then linearizing this equation and setting �=eiLX+	T yields
the dispersion relation

	3 + 9	2L2 + 24	L4 − v̂2	L2 + 16L6 − v̂2L4 − 16a0
2qL2

+ iv̂�2	2L + 10	L3 + 8L5� = 0. �22�

Before considering this dispersion relation for general L, it is
helpful to consider the two limiting cases, of small and large
L. First, if L is small, then 	3�16a0

2qL2. Thus, to leading
order in L, 	=	2/3L2/3, where 	2/3

3 =16a0
2q; hence all travel-

ing waves are unstable if L is small. On the other hand, if L
is large, then we have 	3+9	2L2+24	L4+16L6
0, and so
	
−L2 or −4L2 �twice�; hence traveling waves are stable to
large-L disturbances. In summary, all traveling waves are
unstable at onset �provided a0

2q�0; in fact we shall see later
that when a0

2q is suitably small, we shall need to reconsider
this conclusion�. The rest of the section provides more details
of the instability for general values of L.

In order to find the secondary stability boundary for the
traveling waves, we set 	=i� in dispersion relation �22�,
where � is real. From the real and the imaginary parts, we
obtain

�2 −
16

9
L4 +

16

9
a0

2q +
v̂2

9
L2 +

10

9
v̂L� = 0,

�3 − 24�L4 + v̂2�L2 + 2v̂L�2 − 8v̂L5 = 0,

and then after eliminating � between these two equations we
find that this stability boundary is given by

16a0
6q3 − 2500L12 + 2100L8a0

2q + 384L4a0
4q2 − 200v̂2L10

− 4v̂4L8 − 44v̂2L6a0
2q + v̂2L2a0

4q2 = 0. �23�

We note that in this equation L and v̂ appear only as even
powers and thus we can restrict our attention to positive L
and v̂ with no loss of generality. However, both even and odd
powers of q occur, so no such economy is possible in con-
sidering q �indeed, in the light of �3�, we should expect dif-
ferent behaviors for q�0 and q�0�.

For the case of no dispersion, Tribelsky and Velarde �3�
showed that, according to the present scaling, there is mono-
tonic instability of the rolls with q�0 �with unstable distur-
bances having 0�L� �a0

2q�1/4�. In contrast, oscillatory insta-
bility occurs for rolls with q�0 �unstable modes having 0
�L� �−2a0

2q /25�1/4�.
It is convenient to present our results for the dispersive

case in terms of the rescaled variables q�=q /r2
1/2, L�

=L /r2
3/8, and v�= v̂ /r2

3/8. Figure 7 illustrates the regions of

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

stable stable

unstableunstable

L

q

'

' 0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

-0.6 -0.4 -0.2 0 0.2 0.4 0.6

stable stable

unstableunstable

L

q

'

'

(b)(a)

FIG. 7. Predicted secondary stability boundaries of spatially periodic solutions of the Nikolaevskiy equation. �a� Nondispersive case
�v�=0� and �b� dispersive case �v�=5�.
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stability and instability of the traveling waves, in the cases
v�=0 and v�=5. Note that in the dispersive case all instabili-
ties are oscillatory.

We should view with caution the conclusion above that all
traveling waves are unstable because it relies crucially on the
assumption that a0

2q is not small. The stability analysis above
breaks down if q or a0

2 are small; the true stability properties
of corresponding traveling waves will be investigated in Sec.
VI.

VI. SECONDARY STABILITY OF TRAVELING WAVES:
� ,�=O(�)

In this section, we investigate the cases of traveling waves
with wave number close to k=1 or close to the marginal
stability boundary, in other words those for which in the
previous scaling a0

2q�1.

A. Traveling waves with close-to-critical wave number

In order to resolve the secondary stability problem for
traveling waves with wave number close to kc=1, we set k
=1+�2q, as was done for the nondispersive case by Tribelsky
and Velarde �3�. Then a distinguished balance occurs for
� ,�=O���; so we write

� = ��̂, � = ��̂ .

Upon setting ĉ= �̂− �̂, r=�2r2, v̂=3�̂−5�̂, X=�x, �=�t, and
T=�2t �the scalings for X and T being as in �3��, we find from
Eq. �2� that

u = ��6�r2 + �2a�X,T��eiM + c.c. + �3f�X,T� + ¯ ,

where now

M = �1 + �2q�x − c� + ��− v̂q + 1
6r2��̂ − 5�̂��T + ���X,T� .

The terms in M involving �̂ and �̂ correspond to nonlinear
effects of the finite traveling-wave amplitude on the speed of
the waves; see Eq. �9�.

After much algebra, the relevant �nonlinear� amplitude
equations are found to be, at O��4� and O��5�,

��

�T
= 4

�2�

�X2 − f − v̂
��

�X
, �24�

� f

�T
=

�2f

�X2 − 12r2
1/2 �a

�X
, �25�

�a

�T
= 4

�2a

�X2 − 24r2
1/2� ��

�X
�2

− v̂
�a

�X
− 6r2

1/2 � f

�X
− 2r2a

+ 6r2
1/2�− 8q +

22

3
r2 + 12

�2

�X2 + �10�̂ − 3�̂�
�

�X
� ��

�X
.

�26�

We note that in these equations the influence of dispersion
arises not only through the terms involving the group veloc-

ity v̂ but also through the term 10�̂−3�̂ in the equation for
aT, in contrast to the previous case.

To determine the stability of the traveling waves, these
equations are linearized; for solutions proportional to eiLX+	T,
we find the dispersion relation

	3 + 9	2L2 + 24	L4 + 16L6 + 528r2
2L2 − 576r2qL2 + 82r2	L2

− 568r2L4 + 2r2	2 − v̂2	L2 − L4v̂2 + i�2r2v̂	L

+ 360r2�̂L3 + 8v̂L5 + 10v̂	L3 + 2v̂	2L + 2r2v̂L3� = 0.

�27�

As in Sec. V, in the limit of large L, all eigenvalues have
negative real part. By contrast, in the limit of small L, if we
expand 	=	1L+	2L2+¯, then from Eq. �27� we find that
	1 satisfies

r2	1
2 − 288r2q + 264r2

2 + ir2v̂	1 = 0,

whereas 	2 is determined from

	1
3 + 82r2	1 + 4r2	1	2 − v̂2	1 + 2i�r2v̂	2 + v̂	1

2 + r2v̂

+ 180r2�̂� = 0.

The first of these gives

	1 =
1

2
�− iv̂ � �− v̂2 + 1152q − 1056r2� , �28�

and so traveling waves are certainly unstable if their wave
number satisfies q�11r2 /12+ v̂2 /1152. The term v̂2 /1152
indicates that these waves become more stable with respect
to this instability in the presence of dispersion. If instead q
�11r2 /12+ v̂2 /1152, then 	1 is purely imaginary, and stabil-
ity is determined by

	2 = �
− 72v̂q/r2 + 171v̂/2 − 180�̂

�v̂2 − 1152q + 1056r2

+
91

2
−

72

r2
q , �29�

a consideration of which shows that these waves are made
more unstable to the long-wavelength oscillatory instability
in the presence of dispersion.

Analysis of the stability boundaries to disturbances of
general L is rather involved, and we do not present the de-
tails here. Furthermore, the parameter space is large enough
to preclude our making general statements; instead we con-
sider some illustrative special cases. To present the conclu-
sions most generally, it is helpful to introduce q�=q /r2, L�

=L /r2
1/2, ��= �̂ /r2

1/2, ��= �̂ /r2
1/2, and v�= v̂ /r2

1/2.
Let us begin by considering the special case ��=0. Figure

8 shows where traveling waves with different values of q�
are stable and unstable to perturbations with wave numbers
L�; each panel in the figure corresponds to a different choice
of ��. In understanding the sequence of transitions in the
topology of the various panels, it is helpful to first consider
the behavior of the stability boundaries for small �� �and
hence small v��, in particular in the L�=0 limit. We have
seen above that the right-hand stability curve �labeled R�
intersects the q� axis at q+�=11 /12+v�2 /1152. For small v̂, it
follows from Eq. �29� that the left-hand stability curve �la-
beled T� intersects the q� axis at q−��91 /144
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+5�v�� /26 5681/2. Thus as �� is increased from zero, q−�
moves to the right more rapidly than does q+�. Eventually, at
some sufficiently large value of ��, q−�=q+�, and all traveling
waves are unstable in the limit L�=0. On the other hand,
when �� is large, q−� halts at q−�=131 /144. However, q+� con-
tinues to increase, and this results in the appearance of a
small-L� stability region. In fact, for sufficiently large ��,
some rolls are stable to disturbances for all L�. For 0
��
��c�, where �c�
5.7, all traveling waves are unstable. For
����c�, a stable region appears �see Fig. 8�e��. Subse-
quently, for any value of ����c� the stable region becomes
more apparent.

This result can be compared with the numerical stability
results shown in Fig. 2�a�, where �=1 /2. The stability con-
dition ����c�
5.7 �where ��=� /�r� corresponds to r
� �� /5.7�2=0.0077, showing remarkably good agreement
with the upper limit of the stable region in Fig. 2�a�.

If instead we consider the special case ��=0, with
���0, we find a broadly similar picture, in that all traveling
waves are unstable when �� is small, but some eventually
stabilize once �� is sufficiently large. From Fig. 9 it is ap-
parent that the two stability boundaries R and T intersect,
coalesce, then lift off from the q� axis as �� is increased.
Ultimately they reattach to the q� axis, when ��=�c�, where
�c�
5.06 as shown in Fig. 9�g�. For ����c�, there is a re-
gion of stable traveling waves.

Let us now express the results above in a form more illu-
minating for comparison with our earlier numerical second-
ary stability calculations �Sec. III�. As an example, we set

�̂=1 and �̂=0 and consider the limit of small L, looking for
regions of stable waves as r2 is varied.

From Eq. �28�, rolls are unstable as long as q�11r2 /12
+ v̂2 /1152. If q�11r2 /12+ v̂2 /1152, then 	1 is purely imagi-
nary and hence 	2 must be considered. From Eq. �29� we

have definite instability if r2�144q /91. In addition to these
rather blunt conditions, the sign of 	2 must also be consid-
ered in order to determine the stable region. Figure 10 shows
the curves q=11r2 /12+ v̂2 /1152 �solid line�, q=91r2 /144
�dashed line� and 	2=0 �dotted lines�. Any region of stability
must lie between the solid and dashed lines. After checking
carefully the signs of the eigenvalues, we find that the stable
region �indicated by the asterisks in the figure� lies between
the two dotted lines in the upper and lower parts of the
graph, and between the dotted and solid lines for a small
range of intermediate values of r2 �see Fig. 10�. Although
they appear almost parallel in Fig. 10�a�, for large r2, as in
Fig. 10�b�, the two sides of the secondary stability region are
no longer approximately parallel.

Note the qualitative similarity between the shapes of the
stable regions in Figs. 2 and 10.

The question remains of whether or not this stable region
extends to indefinitely large values of r2. To investigate the
large-r2 behavior of the stability region, we consider large r2
with q=O�r2�, motivated by the observation, from Fig.
10�b�, that stable rolls lie in some region between straight
lines in �q ,r2� parameter space. In this limit the stability
condition from Eq. �28� simplifies to q�11r2 /12, while 	2
=91 /2−72q /r2+O�r2

−1/2�. Hence we can conclude that the
region of stable waves for small L and large r2 is

91r2/144 � q � 11r2/12. �30�

In summary, the results of this section show that when � and
� are O���, there can be a narrow region of stable traveling
waves near k=1 and that there is no upper limit on the size of
r2 allowing stable rolls.

For even smaller values of � and �, of order �2, we have
checked that � and � do not appear in the leading-order
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FIG. 8. The stability boundaries for traveling waves according to the amplitude Eqs. �24�–�26�, in the special case ��=0, for different
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amplitude equations, so in that case all traveling waves are
unstable, as in the nondispersive case.

B. Traveling waves close to the marginal curve

We now turn to the second case in which a0
2q may be

small: in the region close to the marginal stability curve.
Following an analysis similar to that for the dissipative Ni-
kolaevskiy equation �4�, we find that, in contrast to the dis-
sipative case �in which a narrow region of stable rolls exists
close to the marginal curve �4��, here all traveling waves are
unstable near the marginal curve.

VII. NUMERICAL SIMULATIONS OF THE DISPERSIVE
NIKOLAEVSKIY EQUATION

To illustrate some of the consequences of the results of
the preceding sections, we have carried out numerical simu-
lations of the dispersive Nikolaevskiy equation, using a pseu-
dospectral method, with exponential time stepping �17�, of
which a small sample are presented here. The initial

condition is taken to be a traveling wave with a given wave
number k �approximated as a cosine of the amplitude given
by Eq. �8��, plus small random noise, and the domain size is
D=100� /k. Figure 11 illustrates, in order, �a� strong, �b�
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traveling waves are certainly unstable. The dashed line shows
where q=91r2 /144; to the left of this line, traveling waves are also
certainly unstable. The dotted lines show where 	2=0.
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intermediate, and �c�–�e� weak dispersion. The values of �,
�, and k are chosen in each case to correspond to traveling
waves that are predicted to be unstable by the asymptotic
analysis.

Figure 11�a� shows the case of strong dispersion, with �
=2 and �=1, and wave number k=1 and r=0.01. The sta-
bility analysis of Eq. �17� predicts that the rolls are unstable,
since �=2 and �=1 lie in the unstable region in Fig. 5; the
numerical simulation agrees with this asymptotic result.

In Fig. 11�b� an example of intermediate dispersion is
simulated, where �=2�3/4 and �=�3/4, r=�2 and k=1+�q,
for q=0.2 and �=0.1. It is known from the asymptotic results
of Sec. V that � and � being O��3/4� with wave number k
=1+�q will result in unstable traveling-wave solutions,
which agrees with the simulation shown in Fig. 11�b�.

To show the effects of weak dispersion with wave number
k=1+�2q we take r=0.01 and �=0.1. Figure 11�c� shows the
case �=2�, �=0, and q=0.87, while in Fig. 11�d� the param-
eter values are �=0, �=5�, q=2.5. Rolls should in each case
be unstable, according to the analysis of Sec. VI A, and this
is confirmed by the numerical simulations.

Figure 11�e� represents weak dispersion, with �=� and
�=0. The wave number is k=1+�2q and r=�2r2, for �
=0.25, q=0.02 with r2=0.04. These values of r2 and q lie in
the unstable region given in Fig. 10, and the simulations
support this prediction of instability.

VIII. CONCLUSIONS

We have examined the stability of spatially periodic solu-
tions to the dispersive Nikolaevskiy equation, which is the

original model introduced by Nikolaevskiy �1� for seismic
waves. The reincorporation of dispersive effects stands in
contrast to most studies subsequent to Nikolaevskiy’s paper.
We have shown how the instability of all spatially periodic
solutions at the onset of pattern formation in the more-often
treated, nondispersive version is modified by the presence of
dispersive terms. Our results have been achieved through
both a numerical calculation of the secondary stability
boundary for the traveling-wave solutions and an asymptotic
treatment of three particular scalings in � for the dispersive
terms. The secondary stability diagrams �“Busse balloons”�
can be rather complicated, and can depend sensitively on the
size of the dispersive terms.

Our consideration of the case � ,�=O�1� can be inter-
preted as giving information about the bottom of the second-
ary stability diagram obtained in �k ,r� parameter space for
fixed � and �. Two cases were found: either all traveling
waves are unstable at the bottom of the diagram, or there is a
symmetrical, Eckhaus-like region of stable traveling waves,
right down to onset at r=0 �although the width of the region
of stable rolls does not stand in the usual Eckhaus ratio to the
width of the existence region of rolls�.

The separate analysis for smaller values of � ,� can be
interpreted as shedding light on the upper parts of the
fixed-� ,� stability diagram in k ,r parameter space. We have
shown that for small � ,�, a narrow region of stable waves
may exist near k=1. However, beyond the range of validity
of the asymptotic analysis, the numerical stability results
show the complicated nature of the secondary stability
boundaries, so we are unable to draw any significant general
conclusions about the form of the secondary stability dia-
gram, limiting ourselves to some specific examples. Things
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FIG. 11. Snapshots of the numerical solutions of Eq. �2�. Parameter values are: �a� �=2, �=1, r=0.01, and k=1; �b� �=0.3557, �
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are further complicated by the fact that rolls predicted to be
stable by the asymptotics may in fact turn out to be unstable
when the full numerical calculation is performed, since the
asymptotics concerns only long-wavelength instabilities, and
other, short-wavelength instabilities may turn out to be
present.

In this paper, we have said little about the behavior of
time-dependent solutions of the dispersive Nikolaevskiy
equation. However, it appears from our numerical simula-
tions that when all waves are unstable, chaotic states are
found that have a similar behavior to that found in the non-
dispersive Nikolaevskiy equation �5–7�.

�1� V. N. Nikolaevskiy, in Recent Advances in Engineering Sci-
ence, Lecture Notes in Engineering No. 39, edited by S. L.
Koh and C. G. Speziale �Springer-Verlag, Berlin, 1989�, pp.
210–221.

�2� H. Fujisaka and T. Yamada, Prog. Theor. Phys. 106, 315
�2001�.

�3� M. I. Tribelsky and M. G. Velarde, Phys. Rev. E 54, 4973
�1996�.

�4� S. M. Cox and P. C. Matthews, Phys. Rev. E 76, 056202
�2007�.

�5� P. C. Matthews and S. M. Cox, Phys. Rev. E 62, R1473
�2000�.

�6� M. I. Tribelsky and K. Tsuboi, Phys. Rev. Lett. 76, 1631
�1996�.

�7� H. Sakaguchi and D. Tanaka, Phys. Rev. E 76, 025201�R�
�2007�.

�8� R. W. Wittenberg and K.-F. Poon, Phys. Rev. E 79, 056225
�2009�.

�9� B. A. Malomed, Phys. Rev. A 45, 1009 �1992�.
�10� N. A. Kudryashov and A. V. Migita, Fluid Dyn. 42, 463

�2007�.
�11� T. Kawahara, Phys. Rev. Lett. 51, 381 �1983�.
�12� E. Plaut and F. H. Busse, J. Fluid Mech. 464, 345 �2002�.
�13� J. Duan, H. V. Ly, and E. S. Titi, Z. Angew. Math. Phys. 47,

432 �1996�.
�14� F. J. Elmer, Physica D 30, 321 �1988�.
�15� W. Eckhaus, Studies in Nonlinear Stability Theory, 7th ed.

�Springer-Verlag, Berlin, 1965�.
�16� R. Hoyle, Pattern Formation: An Introduction to Methods

�University Press, Cambridge, 2006�.
�17� S. M. Cox and P. C. Matthews, J. Comput. Phys. 176, 430

�2002�.

NIKOLAEVSKIY EQUATION WITH DISPERSION PHYSICAL REVIEW E 81, 036220 �2010�

036220-11


